If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+8x-2=0
a = 24; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·24·(-2)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*24}=\frac{-24}{48} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*24}=\frac{8}{48} =1/6 $
| 4(a+3)=4a7 | | 16=x(2x-4)6 | | 8x-8=5x25 | | -3(m-7)-3(8-3m=5(m+4)+3 | | 12=4(6-3y) | | 7(4w+4)/4=-3 | | 4(7c+1)-36=21c+3 | | 7(c+8)=6c-1 | | 3+p/2=6 | | 25/9=4/x | | -3=-2+n/8 | | 7x+7-4x=1+2x-2 | | F(5)=3x^2+5x+5 | | 32-12=4(x-3) | | -10=n/10-9 | | 32-12=(x-3) | | c=2(3)+1 | | 8^2x+5=48 | | 4(9^9x)=7 | | -19=-9+m/2 | | 3x-6-2x+7=30 | | 7=r/1+7 | | 3(y-3)-7y=-33 | | 3=-2+p/3 | | x/4+5=2x/5-2-x/30 | | 7+m/4=4 | | -1.9x-4=-1.4x+3 | | -3-2x+4+6=4x+7 | | 43=10-3n | | 1=b/3+6 | | 6=10+k/10 | | -15-k=1-3k |